
PAGE D'ACCUEIL
23 résultats trouvés avec une recherche vide
- Projets | 2LG123
Laboratoire de construction en bambou urbain Initiative de construction durable dans la zone rurale de Gitega (Songa) Localisation : Commune de Songa, périphérie périurbaine de Gitega Contexte : Expansion périurbaine rapide, habitat informel, demande croissante de matériaux de construction durables et bon marché Objectif du projet : Piloter des technologies de construction à base de bambou pour des logements abordables, des petits bâtiments publics et des infrastructures urbaines résilientes au changement climatique. Composantes clés : • Créer un centre de démonstration de construction en bambou sur 2 hectares en périphérie de Gitega (Songa) • Former 60 jeunes de la région à la menuiserie en bambou et aux systèmes de construction modulaire préfabriqués • Construire 3 prototypes : un abri communautaire, un groupe de stands de marché et une salle de classe • Utiliser du Guadua angustifolia et du Bambusa balcooa cultivés localement, associés à des sols en terre comprimée • Collaborer avec les municipalités et les écoles techniques locales (par exemple, l’Institut supérieur de gestion des entreprises [ISGE]) Objectifs d’impact (3 ans) : • Introduire les matériaux de construction en bambou dans 5 quartier de la région de Gitega et les communautés environnantes • Certifier 30 techniciens en construction en bambou chaque année • Réduire les coûts de construction des bâtiments communautaires de 20 à 30 % grâce à l’utilisation de bambou local Localisation : Province de Ngozi, collines entourant les communes de Busiga et de Tangara Contexte : Terrain escarpé, pentes dégradées, fortes précipitations érosives, forte densité de population rurale Objectif du projet : Réduire l’érosion des pentes et améliorer les revenus des petits exploitants grâce à l’agroforesterie intercalaire de bambou sur les pentes dégradées. Composantes clés : • Mise en place de terrasses pilotes en bambou sur 50 ha de terres agricoles dégradées • Formation de 200 agriculteurs locaux à la culture intercalaire du bambou avec le haricot, le manioc et la banane • Utilisation de Bambusa vulgaris et de Dendrocalamus asper (espèces à croissance rapide et résistantes à l’érosion) • Développement d’une unité villageoise de transformation des pousses de bambou (pour l’alimentation et la vente) • Partenariat avec des coopératives locales pour la production artisanale de clôtures et de paniers en bambou Objectifs d’impact (3 ans) : • Réduire de 40 % la perte de terre végétale dans les zones pilotes • Augmentation de 25 % des revenus des ménages grâce à la vente de pousses de bambou et à l’artisanat • Création de 50 emplois permanents dans la plantation, la transformation et la commercialisation Couloir de subsistance de Green Hills Agroforesterie de bambou dans la province de Ngozi PROJETS EN COURS Découvrez l'impact transformateur de nos deux initiatives phares et explorez comment chaque projet est le pionnier de solutions durables pour les défis de demain. © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- Collaboration | 2LG123
COLLABORATION STRATÉGIE En 2018, le Centre National de Recherche sur le Bambou du Burundi ( CNRBB ) a établi une collaboration stratégique avec un partenaire technique chinois en vue de mener un projet expérimental de culture de bambou cespiteux. Dans le cadre de ce partenariat, le prestataire chinois a fourni des espèces de bambou de haute qualité ainsi qu’un savoir-faire professionnel en plantation afin de garantir la réussite du projet. CULTIVATION Grâce à une gestion scientifique des cultures et un accompagnement technique ciblé, la plantation expérimentale a permis d'obtenir avec succès du bambou cespiteux parfaitement adapté aux conditions locales. Ces résultats mettent en lumière son excellent potentiel de croissance et sa réelle valeur économique pour la région. Cette initiative a non seulement permis d'accumuler un savoir-faire précieux en culture bambousière, mais elle a également jeté les bases indispensables à un déploiement à grande échelle et au développement d'une filière industrielle organisée. AVENIR Dans la perspective des prochaines étapes, nous continuerons à renforcer la coopération technique, à optimiser les méthodes de culture, et à explorer les applications du bambou cespiteux dans des domaines tels que la restauration écologique, les matériaux de construction et d’autres secteurs stratégiques. Notre ambition est de stimuler l’innovation en matière de développement durable et de promouvoir des modèles économiques verts et résilients. PARTENAIRE Nous sommes ouverts à toute opportunité d’établir des partenariats stratégiques avec des organisations engagées dans la recherche et le développement du bambou. Notre équipe s’attache à bâtir des relations de collaboration solides, visant à faire progresser l’innovation dans les applications durables du bambou. Veuillez nous contacter en remplissant le formulaire ci-dessous. Cliquez pour remplir le formulaire © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- Notre Histoire | 2LG123
Notre Histoire Créé en 2017 sous l’égide de l’ISABU (Institut des Sciences Agronomiques du Burundi), le Centre de Recherche sur le Bambou du Burundi est né d’une initiative conjointe entre des experts locaux en agroforesterie et des partenaires régionaux préoccupés par l’érosion des sols, la déforestation et les moyens de subsistance en milieu rural. Situé à proximité des collines verdoyantes de la province de Muramvya, le site expérimental du centre a été fondé dans le but d’étudier des espèces de bambou introduites, adaptées aux zones de hautes et moyennes altitudes. Au fil du temps, il s’est transformé en un pôle régional d’innovation en matière d’agroforesterie à base de bambou, de matériaux de construction durables et de génération de revenus pour les petits exploitants. Parmi les premières avancées du centre figurent la propagation réussie de variétés de bambou résistantes à la sécheresse, ainsi que la formation de plusieurs coopératives rurales à la culture, à la récolte, à la transformation et à la valorisation du bambou. Bien que modeste à ses débuts, le centre avait, dès 2024, positionné le Burundi comme un leader discret de la filière bambou émergente en Afrique de l’Est, l’ISABU intégrant désormais ses résultats aux stratégies nationales de reboisement et de résilience climatique. © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- GUIDE TO BAMBOO TYPES | 2LG123
Guide des types de bambou Grâce à sa polyvalence exceptionnelle et à son élégance naturelle, le bambou s’est imposé mondialement, certaines espèces étant devenues emblématiques à l’échelle internationale. En parallèle, l’Afrique abrite des espèces de bambou uniques, qui jouent un rôle essentiel dans les écosystèmes locaux et soutiennent de nombreuses économies rurales. Ce guide met en lumière à la fois les variétés de bambou les plus reconnues dans le monde et les espèces endémiques du continent africain, qui méritent une attention toute particulière. PHYLLOSTACHYS EDULIS MOSO BAMBOO Probablement le bambou le plus important sur le plan économique au monde, le bambou Moso est le géant des bambous tempérés et une véritable célébrité dans l’univers du bambou. Origine : Chine et Taïwan Hauteur : 20 à 26 mètres Diamètre : 10 à 18 cm Particularité : Produit 80 % des articles en bambou à l’échelle mondiale, notamment le parquet, le mobilier et les textiles Croissance : Jusqu’à 1 mètre par jour dans des conditions optimales DENDROCALAMUS GIGANTEUS GIANT BAMBOO Fidèle à son nom, cette espèce est l’un des bambous les plus grands au monde et aussi l’un des plus emblématiques. Origine : Originaire d’Asie du Sud-Est Hauteur : Jusqu’à 30 mètres Diamètre : Jusqu’à 30 cm Particularité : Utilisé dans la construction, l’ameublement et les structures de grande envergure Atout principal : Malgré sa taille imposante, c’est un bambou cespiteux qui ne se propage pas de manière invasive PHYLLOSTACHYS NIGRA BLACK BAMBOO L’une des espèces de bambou les plus spectaculaires visuellement, prisée pour son apparence saisissante dans les jardins ornementaux du monde entier. Origine : Originaire de Chine Hauteur : 6 à 9 mètres Diamètre : 2,5 à 5 cm Particularité : Chaumes qui prennent une teinte noire brillante après 2 à 3 ans Atout principal : Très recherché pour l’aménagement paysager et la fabrication de meubles haut de gamme BAMBUSA VENTRICOSA BUDDHA'S BELLY BAMBOO Célèbre pour ses entrenœuds enflés rappelant le ventre de Bouddha, cette espèce est l’une des variétés de bambou les plus reconnaissables au monde. Origine : Sud de la Chine Hauteur : 12 à 17 mètres Diamètre : 5 à 8 cm Particularité : Entrenœuds renflés très marqués, notamment lorsque la plante est soumise à un stress Signification culturelle : Considéré comme un porte-bonheur dans de nombreuses cultures asiatiques PHYLLOSTACHYS AUREA GOLDEN BAMBOO L’une des espèces de bambou les plus largement cultivées dans les régions tempérées du monde. Origine : Chine Hauteur : 4,5 à 10,5 mètres Diamètre : 2,5 à 5 cm Particularité : Chaumes jaune doré lorsqu’ils sont exposés à la lumière directe du soleil Atout principal : Entrenœuds comprimés à la base, lui conférant une apparence unique OXYTENANTHERA ABYSSINICA AFRICAN LOWLAND BAMBOO Le bambou indigène le plus répandu en Afrique, également connu sous le nom de bambou de savane ou bambou de Bindura. Répartition : Très présent à travers l’Afrique subsaharienne, du Sénégal à l’Éthiopie, jusqu’au nord de l’Afrique du Sud Hauteur : 10 à 15 mètres Diamètre : 5 à 10 cm Caractéristiques écologiques : Résistant à la sécheresse, pousse dans les savanes boisées et les zones semi-arides Particularité unique : Fleurit de manière grégaire après plus de 70 ans de croissance végétative Derniers épisodes de floraison observés : 2006 en Afrique de l’Ouest et 2010 en Éthiopie YUSHANIA ALPINA MOUNTAIN BAMBOO Autrefois connue sous le nom d’Arundinaria alpina, cette espèce est le plus grand bambou alpin d’Afrique. Répartition : Régions montagneuses de l’Afrique de l’Est, notamment au Kenya, en Ouganda, en Tanzanie et en Éthiopie Hauteur : 12 à 18 mètres Diamètre : 5 à 13 cm Importance écologique : Forme de vastes forêts de bambou entre 2 400 et 3 400 mètres d’altitude Rôle pour la faune : Habitat essentiel pour le gorille des montagnes, qui est une espèce en danger, et pour de nombreuses autres espèces animales THAMNOCALAMUS TESSELLATUS BERG BAMBOO La seule espèce de bambou africaine actuellement classée comme menacée. Répartition : Afrique du Sud, principalement dans les montagnes du Drakensberg Hauteur : 4,5 à 6 mètres Statut de conservation : Vulnérable Rôle écologique : Contribue à prévenir l’érosion des sols dans les bassins versants montagneux Importance culturelle : Utilisée traditionnellement par les populations autochtones pour l’artisanat et la construction © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- Article 8 | 2LG123
Bamboo fibre: A sustainable solution for textile manufacturing Akhtarul Islam Amjad https://doi.org/10.1016/j.bamboo.2024.100088 This review paper provides insights into bamboo fibre, covering its extraction methods, properties and various applications. The initial focus is on the different techniques used to extract bamboo fibre, including mechanical and chemical processes, with an exploration of the advantages and challenges associated with each method. The paper then highlights the unique properties of bamboo fibres, such as their strength , flexibility and sustainability. A thorough analysis of the applications of bamboo fibre is presented, encompassing a wide range of sectors such as textiles, clothing, home furnishings and technical textiles. The review encompasses both traditional uses in clothing and emerging applications in technical and functional textiles. Additionally, the paper addresses the challenges that arise in the utilization of bamboo fibre, including concerns regarding labelling accuracy and environmental claims. Abstract 1. Introduction Fibres are crucial in the textile industry as they determine the characteristics of fabrics and end products. Natural and man-made fibres undergoes various processes to form textiles, and their properties influence the durability, comfort and aesthetics of the final products. Sustainability considerations drive the adoption of eco-friendly options, such as natural and recycled fibres, in modern textile production, with bamboo being highlighted as an excellent choice due to its versatility and minimal environmental impact (Kozłowski and Mackiewicz-Talarczyk., 2020 ). Bamboo, known as the fastest-growing woody plant in the world, surpasses even the most rapid trees, with some species having an impressive growth rate of up to 1 m per day. (Janzen,1976 ). Major producers, such as India, China, and Brazil, dominate the annual market of over 40,000 tonnes of bamboo fibre. Apart from industrial applications, bamboo serves as a crucial resource in many regions for food, fodder and construction (Zuo et al., 2018 ). Bamboo fibres, often obtained from the tall Phyllostachys edulis (Carrière) J.Houz. commonly known as 'Moso bamboo', have become essential in textile applications. Regenerated bamboo viscose fibres, known for their high cellulose yield, have gained popularity in the market, positioning bamboo as a fashionable and durable eco-friendly building option (Prakash, 2020 ). In the current manufacturing landscape, bamboo culm fibres, known for their exceptional properties, are extensively used to create yarns and fabrics. This includes a wide range of products, such as clothing items such as underwear, sports gear, t-shirts and socks, as well as hygiene items such as sanitary napkins, masks and bandages. Bamboo's characteristics also make it suitable for UV-protective clothing, home furnishings and even food packaging. The growing interest in bamboo stems from its unique and beneficial qualities, leading to the production of bamboo fibre in abundance (Akinlabi et al., 2017 ). The current literature on bamboo fibres within the textile industry lacks a comprehensive review that synthesizes and integrates processing technologies, environmental sustainability and consumer perspectives in a single source. Moreover, there is a pressing need for an exhaustive review that delves into the processing methods of bamboo fibres for textile applications, comparing and contrasting various techniques and assessing their impacts on the final product's quality and properties. 2. Chemical composition and structure of bamboo timber Bamboo is composed primarily of cellulose, hemicellulose , and lignin, along with small quantities of other substances such as aqueous extract, pectin and inorganic substances. The specific chemical composition of bamboo is influenced by the species of bamboo chosen. When it comes to bamboo timbers, the main constituents are cellulose (60%-70%), pentosans (20%-25%), hemicelluloses (20%-30%) and lignin (20–30%) (Mousavi et al., 2022 ). Additionally, there are minor constituents present, including resins, tannins , waxes and inorganic salts. It is worth noting that the cellulose content in bamboo is lower compared to that of cotton. Hemicellulose, on the other hand, is an amorphous substance with a low degree of polymerization. It is distributed among the long fibres and micro fibre of bamboo and easily becomes wet and swells when it absorbs moisture. Lignin, a complex macromolecular compound of the aromatic series, is distributed among the intercellular layers and tiny fibres of bamboo. The colour of bamboo fibre is determined by the presence of lignin. The chemical composition of bamboo is similar to that of hardwoods in terms of proximate chemical compositions, except for higher alkaline extract, ash, and silica contents. The carbohydrate content of bamboo plays a crucial role in its durability and service life [8]. The stability of bamboo against mould, fungal and borer attacks is strongly influenced by its chemical composition. Bamboo, being a natural nanocomposite, possesses multinodes and functional gradient structures at both macroscopic and microscopic levels. All the internodal cells of bamboo grow in a pale, end-to-end arrangement (Imadi et al., 2014 , Akinlabi et al., 2017 , Mousavi et al., 2022 ). 3. Bamboo fibre extraction Bamboo fibre can be obtained through various methods, such as retting, mechanical extraction and chemical extraction. The characteristics exhibited by bamboo products largely depend on whether the bamboo fibre is derived from natural sources or is a regenerated type. The first two methods yield bundles of original or pure bamboo fibres in staple form, while the latter produces bamboo viscose filaments, also known as regenerated bamboo cellulose, which can be further transformed into staple fibres if necessary. In order to extract fibres from the bamboo culm , all three processes begin by splitting bamboo strips directly taken from the culm to eliminate the diaphragm and node. Subsequently, the remaining hollow sections of the stalks are subjected to either mechanical or chemical processing , depending on the intended applications (Tahir et al., 2011 , Liu et al., 2012 ). 3.1. Retting or degumming This process involves the careful removal of fibre bundles surrounding tissue while minimizing damage to the fibres themselves. The quality of the extracted fibres is dependent on the specific conditions used during the retting process (Singh and Dessalegn, 2021 ) Retting can be categorized into different types, including dew retting, enzymatic retting, water retting and chemical retting. Dew retting involves cutting and distributing bamboo stems in a field, where they are exposed to pectinolytic microbes that break down the pectin and release the fibres (Asmarea et al., 2022 ). Enzymatic retting, on the other hand, utilizes pectin-degrading enzymes (pectinase) in a bioreactor to separate the fibres. Water retting relies on anaerobic bacteria to facilitate the separation of fibres. This process entails submerging bamboo culms or stems in open water, such as a pond, river or tank, for specific periods. The outermost region of the plant swells, leading to the growth of decay-causing microorganisms that aid in the removal of pectin and the extraction of the bamboo fibre from weakly bonded matrix and microfibril aggregations(Sisti et al., 2018 ). Researchers have found that bio-retting of bamboo is a gentle and effective pre-treatment process, yielding more consistent fibre quality compared to mechanical retting techniques (Tahir et al., 2011 ;Liu et al., 2017 ; Sisti et al., 2018 ; Singh and Dessalegn, 2021 ). In mechanical retting, a high amount of fibre is extracted but control of the mechanical forces applied to the plant stems is difficult, and it often results in highly variable fibre lengths, containing high amounts of noncellulosic substances, resulting in low quality and being stiff to the touch. These fibres are only used for household and handicraft articles and as reinforcement for composite materials. However, mechanical retting is more efficient than biological retting alone (Liu et al., 2017 ). Chemical retting of bamboo culms can be accomplished using either acidic or alkaline treatments. Various solutions, such as sodium carbonate (Na2CO3) and hydrochloric acid (HCl), have been employed in these chemical treatments. Extensive research has been conducted to determine the most effective method of retting, including acid retting, alkali retting, and chemical-assisted natural (CAN) retting. Among these methods, CAN retting has been identified as the most efficient for the pre-treatment of bamboo cellulose in preparation for wet spinning. Additionally, several studies have documented the optimization of process parameters to produce bamboo fibres with desired characteristics (Kaur et al.,2013 ; Sugesty et al., 2015 Sadrmanesh and Chen, 2019 ). 3.2. Mechanical Route of Bamboo Fibre Production The process of mechanical extraction, such as using a decorticator machine, relies on mechanical forces to break the bonds between the fibre and bonded matrix. Initially, the woody parts of the bamboo are cut and crushed, and then treated with natural enzymes to break the bamboo down into a soft, mushy and spongy mass. Fig. 1 shows the simplest way to obtain the bamboo fibre by mechanical extraction. The natural fibres can then be mechanically combed out to obtain individual fibres, which can be spun into yarn (Tahir et al., 2011 ). This process produces a fibre known as natural bamboo fibre. In addition to the decorticator machine, mechanical extraction methods can also involve procedures like steam explosion, heat steaming, high-pressure refinery, crushing and super grinding. These mechanical processes are classified based on the quality of the fibres obtained. Rough-textured fibres are obtained through a sequence of cutting, separation, boiling, and fermentation with enzymes, while fine fibres are obtained through a sequence of boiling, fermentation, washing, bleaching, oil-soaking and air-drying. Compared to chemical methods, mechanical methods of bamboo fibre extraction are considered environmentally friendly. However, they are less preferred by the clothing sector due to being more labour-intensive and expensive (Rocky and Thompson, 2018 , Wu et al., 2021 , Zhao et al., 2024 ). Fig. 1. Bamboo fibre extraction by a. mechanical process and b. chemical process (Imadi et al., 2014 , Majumdar and Pol, 2014 , Zuo et al., 2018 ). 3.3. Chemical route of bamboo fibre production The production of regenerated bamboo viscose fibre involves a chemical process. First, bamboo leaves and the soft inner pith from a hard bamboo culm are extracted and crushed. The Moso bamboo culms used must be free from lignin and hemicellulose (Wu et al., 2021 ). Various techniques, such as acid or alkaline pre-treatment, wet oxidation , steam pretreatment and ammonia fibre explosion, have been explored by researchers to achieve this. The main idea behind the process is to cook the bamboo leaves and culms in strong chemical solvents and then perform alkaline hydrolysis combined with multi-phase bleaching. This process is similar to the conventional viscose manufacturing process, and the resulting product is comparable to rayon or modal (Xu et al., 2007 ; Majumdar and Pol, 2014 ; Periyasamy and Militky, 2020 ). The steps involved in the production of bamboo fibre are as follows (Imadi et al., 2014 , Majumdar and Pol, 2014 , Zuo et al., 2018 ) As shown in Fig. 1 (b), bamboo culms are extracted and crushed. In the steeping and pressing process, the crushed bamboo is soaked in a sodium hydroxide (NaOH) solution with a concentration of 15% – 20% at a temperature between 200°C and 250°C for one to three hours. This step forms alkali cellulose, which is then pressed to remove excess solution. Further shredding takes place to increase its surface area , facilitating further processing of the cellulose. The shredded cellulose is left to dry for 24 hours in the presence of ambient oxygen for the aging process. Carbon disulfide is added to the cellulose, causing it to gel. Excess carbon disulfide is then evaporated. This process is known as sulphurisation and xanthation. Further, a diluted solution of sodium hydroxide is added to the cellulose sodium xanthogenate, dissolving it and creating a viscose solution consisting of approximately 5% sodium hydroxide and 7% – 15% bamboo fibre cellulose . Afterward, it undergoes ripening, filtration and degassing, and ultimately, the bamboo viscose is wet-spun. This means that it is forced through spinneret nozzles into a diluted sulphuric acid solution, where the cellulose sodium xanthate is solidified and transformed back into bamboo viscose filaments. Essentially, sulphuric acid (H2SO4) acts as a quenching solution, allowing the strands to solidify into fibre and thus enabling them to be spun into yarn (Majumdar and Pol, 2014 , Singh et al., 2017 , Amjad and Kumar, 2023 ). Concerns have arisen frequently over the environmental friendliness of the chemical process involved in bamboo viscose fibre production. Carbon disulfide is known to be toxic, posing a potential threat to factory workers and causing pollution through air emissions and wastewater (Periyasamy and Militky, 2020 ). Moreover, the recovery rate of carbon disulfide in most industries is only around 50%. Additionally, sodium hydroxide and sulphuric acid also fall into the category of potentially hazardous chemicals. One solution is to consider a process similar to the lyocell process used in the production of bamboo fibre. In this case, N-methylmorpholine-N-oxide (NMMO) is used as a solvent, and the hardening bath typically consists of a water-methanol solution, both of which are non-toxic. Furthermore, this process operates in a closed-loop system, with 99.5% of the chemicals used being recycled for reuse, resulting in only minimal traces being emitted into the environment (Singh et al., 2017 , Wu et al., 2021 ). 3.4. Combination of mechanical and chemical routes The utilization of this method is more prevalent within the pulp and paper sector as opposed to the textile industry. The bamboo strips undergo a chemical treatment process, which is subsequently followed by either compression moulding or roller milling. The combination of both mechanical and chemical treatments results in better separation of fibres. In this method, bamboo is pretreated with chemical substances to dissolve the lignin, glia, and hemicellulose and to weaken the binding force between fibres. The fibres are then formed by a mechanical external force. The extracted bamboo fibre can be used for processing isotropic composite material. This method of production of bamboo fibre can be used to make a variety of composite materials. The products can be further developed, but the bamboo fibre produced by these methods cannot be used for weaving (Maiti et al., 2022 , Zhao et al., 2024 ) 4. Ecological reasons for using bamboo for textiles and clothing Utilizing bamboo for textiles and clothing is underpinned by several compelling ecological reasons, making it a sustainable alternative in the fashion industry (Liese and Köhl, 2015 ). 4.1. Renewability Bamboo plant as a renewable resource is available in plenty almost every region of the globe and plays a great role in socio-economic development (Wang et al., 2008 ). Bamboo is considered a renewable source primarily due to its rapid growth rate and ability to regenerate quickly after harvesting. Bamboo cultivation requires fewer resources compared to traditional timber forestry . Apart from these, antibacterial characteristic, ecofriendly extraction of the fibre from bamboo, and diverse textile application make it renewable resource for the textile industry (Kozłowski and Mackiewicz-Talarczyk., 2020 ). 4.2. Minimal environmental impact Major species of bamboo requires minimal water for cultivation compared to water-intensive crops like cotton. Additionally, bamboo often thrives without the need for pesticides and fertilizers, reducing the environmental impact associated with chemical use in agriculture . Bamboo can be cut and grown again without hurting the environment around it. it grows back without needing to be planted again (Gupta, and Kumar, 2008 ). The studies by Bahari and Krause (2016) and Restrepo et al. (2016) highlight the potential of utilizing bamboo in manufacturing processes to reduce environmental impact. The research demonstrates that bamboo can serve as a sustainable alternative to traditional materials, such as wood-polymer composites, and significantly decrease carbon footprint. Additionally, Agyekum et al. (2017) found that bamboo bicycle frames have a lower environmental impact compared to aluminum and steel frames, showcasing the benefits of incorporating bamboo into various industries for greener and cleaner products. 4.3. Carbon sequestration and reducing global warming Bamboo grows super-fast and has a notable capacity to absorb carbon dioxide , acting as a carbon sink and contributing to climate change mitigation year-round unlike other forests that become carbon sources during non-growing periods. Numerous global studies have evaluated various bamboo species' carbon fixation abilities using specific metrics. For example, Tang et al. (2016) , found that the carbon sequestration rate (CSR) for certain bamboo species could reach up to 70.11 tCO2/ha/yr (Dendrocalamus giganteus). In another study, a Moso bamboo forest managed for 60 years was projected to sequester 18.69 tCO2/ha/yr, while a younger Moso bamboo forest could sequester 1.86 tCO2/ha/yr within the first five years of planting (Zhang et al., 2020 ). In Assam, India, bamboo forests were estimated to accumulate carbon at rates ranging from 4.77 to 8.43 tCO2/ha/yr. (Chaowana et al., 2021 , Pan et al., 2023 ). 4.4. Reduced water usage Bamboo's lower water requirement for growth makes it a water-conscious choice, particularly in regions facing water scarcity. Growing cotton needs a lot of water, but bamboo does not. In few cases it only needs 500 litres of water to make 1 kg of biomass, and does not need extra watering (Nayak and Mishra,2016 ) 4.5. Eco-friendly and biodiversity conservation Bamboo fibre comes from plants, so it is natural and breaks down in the soil with the help of microorganisms and sunlight. Clothes made from bamboo can be composted and disposed of in an environmentally friendly way. Bamboo forests support biodiversity by providing habitats for various species. Sustainable bamboo cultivation practices help maintain diverse ecosystems. Connected rhizome bamboos are often regarded as a viable option for enhancing soil properties in a relatively brief timeframe, owing to their extensive root system . It is worth noting, however, that the majority of these assertions are based on anecdotal evidence. However, a few researchers have made efforts to validate these assertions by conducting data analysis. Tardio et al. (2018) , and Hairiah et al. (2020) highlights how bamboo’s deep roots help anchor soil, preventing erosion and promoting stability. Shinohara et al. (2019) underscore bamboo’s effectiveness in reducing soil erosion and enhancing soil health, making it a crucial ally in long-term soil conservation. 5. Properties of bamboo fibres The essential properties of textile fibres play a pivotal role in determining the success of the spinning process and the quality of the final textile product . The length-to-diameter ratio, strength , cohesiveness, and torsional rigidity are fundamental characteristics that directly impact efficiency and spinnability. Achieving a harmonious balance among these properties is crucial for producing high-quality yarns suitable for diverse textile applications. Additionally, desirable properties such as fineness, resiliency, uniformity, porosity, lustre, durability and commercial availability further contribute to the overall performance and aesthetic appeal of textile materials. These properties are not only essential for the conversion of fibres into yarns but also influence the end product’s texture, appearance, breathability and longevity (David and Pailthorpe, 2002 , Harwood and Smith, 2020 ). Bamboo fibre possesses all the necessary and desirable properties to be utilized as a textile fibre. However, the characteristics of bamboo fibres tend to vary over time due to the decrease in cellulose concentration as they age. Additionally, the method used to extract the fibre significantly impacts the quality of the final product. Bamboo pulp fibre , similar to viscose rayon, is produced through solution spinning, resulting in comparable structure and properties (Sfiligoj Smole et al., 2013 ). Moreover, chemical procedures, in comparison to steam explosion and mechanical processing methods, require less expensive equipment, consume less energy and offer greater control over fibre qualities. Furthermore, different extraction methods have varying degrees of success in removing lignin, which contributes to the stiffness and yellowing of bamboo fibres. Non-cellulosic components also influence fibre properties such as strength, density, moisture absorbency and flexibility (Majumdar and Pol, 2014 , Singh et al., 2017 , Kozłowski and Mackiewicz-Talarczyk, 2020 ). Fabrics woven from mechanically extracted fibres tend to be rough and stiff, while those woven from viscose-type chemical processes have a soft feeling and good drape. Additionally, mechanically processed fibres exhibit higher strength and durability. These differences can be attributed to changes in the physical form of the fibre during chemical processing , resulting in alterations in molecular orientation and polymerization degree. Consequently, yarns and fabrics produced from each manufacturing process behave differently (Gericke and Van der Pol, 2010 , Khalil et al., 2012 ; Prakash et al., 2013 ). 5.1. Dimensional and morphological properties of bamboo fibre Bamboo fibre, obtained from the mechanical extraction process, differs from other bast fibres like ramie and jute in terms of its fineness and shorter length. The dimensional parameter depends on the extraction method. Mechanically extracted bamboo fibre ranges in length from 5 mm to 5 cm, with an average length and diameter of 22.8 mm and 150 μm, respectively. Lengths less than 12.5 mm do not contribute to the yarn manufacturing. These fibres are typically found in bundles consisting of 10–20 individual fibres. Due to their short length, it is challenging to process them into yarn and fabric. Consequently, they are commonly utilized as technical fibres in the production of nonwovens. Regenerated bamboo (chemically processed) fibre can be obtained with long length and pre-decided diameter. Bamboo fibres have a rough surface and a circular cross-section with a small round lumen. The composition of bamboo fibres includes 36–41% cellulose, 22–26% lignin, and 16–21% pectin (Sadrmanesh and Chen, 2019 , Malekzadeh et al., 2021 ). On the other hand, bamboo viscose is derived from the chemical extraction process and possesses distinct properties. It is classified as cellulose II, characterized by low crystallinity and high-water retention and release ability. Bamboo viscose is found in the form of filaments, which are continuous and long strands of material that can be converted into the desired staple length (Xu et al. 2007 ). The cross-sectional shape of bamboo viscose fibres can vary, influencing the packing density of the yarn and subsequently affecting the mechanical behaviour of fabrics under low stress. The cross-section of bamboo viscose fibre has been observed to be irregular and toothed, indicating similarities in longitudinal and cross-sectional morphology with regular viscose rayon fibre. Additionally, bamboo viscose fibres exhibit striated cracks along their length and numerous voids in their cross-section, both of which indicate a good water retention capacity (Li et al., 2019 ; Prakash, 2020; Prakash et al., 2013 ). 5.2. Mechanical properties The durability of bamboo fibre is determined by various factors such as tensile strength , flexural strength , tensile load , elasticity and moulding capability. When compared to flax and jute, fabric made from mechanically extracted bamboo fibre exhibits superior resistance to pilling and abrasion under both dry and wet conditions (Chen et al., 2017 , Li et al., 2019 ). Natural bamboo fibres show lower shrinkage, higher dye sorption, better colour clarity, increased wrinkle resistance and improved lustre without mercerization when compared to cotton fabrics. Xu et al. (2007) compared the properties of bamboo viscose fibres to those of viscose rayon, cotton and modal fibres. Their findings revealed that bamboo viscose and viscose rayon have similar dry tenacity, elongation at break and moisture absorption properties. However, the wet tenacity of bamboo viscose was slightly higher than that of viscose rayon. Bamboo viscose also had lower tenacity than cotton and modal fibres, both in dry and wet states. Bamboo fibre is used for versatile applications with other textile fibres such as cotton, hemp, modal, lyocell and others. This has resulted in a wide range of fabric properties. Among these blends, bamboo viscose fabric stands out in terms of tensile extensibility when compared to both cotton and the cotton/bamboo viscose blend fabrics (Prakash et al., 2013 , Jais et al., 2023 ). On the other hand, researchers have explored the inherent strength properties of bamboo fibres and cotton bamboo blends, revealing remarkable tensile strength. This finding confirms the potential of bamboo fibres to enhance the overall tensile performance of fabric blends. This suggests reduced comfort and lower hand values in fabrics containing cotton, highlighting the importance of considering material interactions in fabric blends. Furthermore, the overall bending rigidity of cotton fabric was higher due to its inherent stiffness and larger diameter of constituent yarn compared to bamboo viscose and viscose rayon yarns . The total hand value, which indicates the overall feel and texture of the fabric, was found to be higher for viscose rayon and bamboo viscose fabrics compared to cotton fabric (Wang et al., 2014 , Kaur et al., 2016 , Jais et al., 2023 ). 5.3. Moisture and heat management properties Fabrics made from natural bamboo fibre possess hollow cross-sections, allowing them to breathe and providing a cool and comfortable wearing experience. However, the variability in length of such fibres leads to difficulty in yarn and fabric manufacturing. So chemically extracted fibre is dominantly used to make the fabrics. Such fabrics also possess moderate moisture management capabilities. The presence of micro-gaps and micro-holes in the fibre contributes to its excellent wicking ability, effectively drawing moisture away from the skin and facilitating quick evaporation, resulting in a cooling sensation (Basit et al., 2018 ). Moreover, the large number of micro-cracks and grooves on the fibre surface enhances the breathability and moisture regulating properties of the fabrics, surpassing those of cotton and hemp. These fabrics also have high hygroscopicity , enabling the fibres to absorb water up to three times their weight, making them easy to dye and finish (Ramamoorthy et al., 2015 , Oner, 2019 ; Kushwaha et al., 2023 ). The fibre derived from the mechanical extraction process of bamboo retains many of the plant’s original properties. However, it should be noted that the washing fastness of these fabrics is unsatisfactory, even under normal washing conditions. Despite this drawback, bamboo fibre offers desirable characteristics such as comfort, aesthetics and processing advantages, including moisture absorption, permeability, softness, pleasant tactile sensation and excellent dye-ability (Nayak and Mishra, 2016 , Malekzadeh et al., 2021 ). Additionally, the thermal properties of bamboo fibre have been explored, revealing fabrics with enhanced thermal conductivity and potential benefits for heat dissipation. As a result, bamboo fibre has gained significant popularity in the textile industry and is widely used in yarn and fabric production due to its unique properties (Majumdar et al., 2010 , Oner, 2019 ). 5.4. Anti-bacterial properties The antibacterial activity of bamboo is its most advantageous property when it transitions from plant to fibre form. This is due to the presence of a bacteriostasis bio-agent called ‘bamboo-kun,’ specifically 2.6-bimethoxy-p-benzoquinone, which provides natural resistance to microbes on the plant. Additionally, the protein dendrocin found in bamboo exhibits highly distinctive fungal resistance (Afrin et al., 2012 ). These beneficial substances are tightly bound to the bamboo cellulose molecule, allowing them to persist even after mechanical processing. As a result, bamboo fabric made from such bamboo fibres effectively eliminates bacteria and mildew , unlike other cellulosic fabrics that promote their growth, leading to unpleasant odours and potential fibre degradation. The medicinal (anti oxidant) use of bamboo in ancient Chinese medicine can be attributed to this property (W , Prakash et al., 2021 ). A study conducted by the National Textile Inspection Association of China (NTIA), Shanghai, Microorganism Research Institute, and Japan Textile Inspection Association revealed that bamboo fabric retains significant antibacterial properties even after undergoing 50 washes. Another factor contributing to bamboo’s inherent bacterial resistance is the presence of chlorophyll and sodium copper chlorophyllin , which act as antibiotics and deodorizers. Softness and good moisture retention property of bamboo fabric leads the comfort to the wearer when it is used near to skin (Hardin et al., 2009 ; Feng et al., 2023 ). Moreover, the absence of free electrons in bamboo fibres makes the resulting fabric antistatic, allowing it to fit comfortably against the skin and drape lightly over the body without clinging (Chen, and Guo, 2007 ). Despite the fact that mechanically processed bamboo fibres have been recognized for their ability to resist pest and fungi infestation due to the antimicrobial properties of bamboo, disagreement exists amongst researchers about the anti-bacterial properties of regenerated cellulose-based bamboo fibres. However, some argue that bamboo viscose fibres do exhibit antibacterial, antifungal and UV protection properties (Teli and Sheikh, 2013 , Mishra et al., 2012 ) Bamboo fibre is renowned for its inherent ability to provide natural protection against UV rays, making it an ideal material in the textile industry, particularly for sun-exposed clothing. Extensive research has shown that natural bamboo fibre boasts an impressive Ultraviolet Protection Factor (UPF), signifying a substantial increase when compared to ramie and viscose, (Mishra et al., 2012 ; Hatua et al., 2013 ). Moreover, studies have indicated that bamboo fabric exhibits lower reflectivity than other materials like flax and cotton, indicating its efficacy as a UV radiation absorber. The presence of sodium copper chlorophyllin in bamboo fibre is noteworthy, as it possesses a UV absorption capacity that is twenty times higher than that of cotton fibre . Furthermore, the density of bamboo fibres plays a crucial role in blocking UV rays. The tightly packed structure of bamboo fibres creates a formidable barrier that minimizes the penetration of harmful UV radiation (Teli and Sheikh, 2013 , Mishra et al., 2012 ). 5.5. UV protection 5.6. Eco values of organic bamboo Organic bamboo fabric, also known as virgin bamboo, possesses the remarkable quality of being fully biodegradable in soil without releasing harmful pollutants such as methane. This natural fibre , derived from bamboo, is celebrated as a sustainable and environmentally friendly textile material for the modern era. Consequently, garments crafted from pure bamboo have an insignificant impact on the environment. Unlike synthetic fibres, which persist in landfills for extended periods, bamboo clothing can be composted organically (Saha and Mandal, 2020 , Plakantonaki et al., 2023 ). 6. Bamboo fibre in the form of various textile products and applications Bamboo fibre is extensively utilized in the textile industry due to its distinctive characteristics, finding versatile applications in textile forms, including yarns, and woven and knitted fabrics. Fig. 2 illustrates the use of bamboo fibre in various textile forms. Bamboo yarn is a continuous filament composed of fibres. Knitted bamboo fabric is created by interlocking loops of bamboo yarn, resulting in a flexible and stretchable material that is commonly used in the production of comfortable and breathable clothing. On the other hand, bamboo woven fabric is formed by the interlacing of two sets of yarn at right angles, producing structured and durable textiles that are suitable for garments and upholstery. In contrast, nonwoven bamboo fabric is manufactured directly from fibres without the need for weaving or knitting. This type of fabric finds applications in a wide range of products, such as filters, wipes and medical textiles. Bamboo fibre is also used for functional clothing and incorporates specialized features, such as moisture-wicking or UV protection, which enhance performance and comfort (Gericke and Van der Pol, 2010 , Prakash et al., 2021 , Zhao et al., 2024 ). Fig. 2. : Various textile forms of bamboo fibre (Gericke and Van der Pol, 2010 , Amjad and Kumar, 2020 , Prakash et al., 2021 , Zhao et al., 2024 ). Bamboo fibre is particularly favoured for creating soft and breathable garments such as T-shirts, underwear, socks and sportswear. Fabrics made from bamboo yarns possess a smooth texture and exceptional draping qualities, which contribute to their widespread popularity. In the realm of intimate clothing, bamboo fibres are employed to manufacture a diverse range of products, including sweaters, bathing suits, lingerie, and blankets. Notably, the natural anti-bacterial properties of bamboo make it an ideal choice for undergarments, snug t-shirts and socks, providing a natural defence against microbial intruders. Moreover, bamboo's ability to block ultraviolet radiation makes it a highly sought-after material for summer clothing, particularly for safeguarding pregnant women and children. Furthermore, its hypoallergenic and soft nature renders it perfect for baby clothing and accessories (Kaur et al., 2016 , Rocky and Thompson, 2020 ). The use of bamboo fibre in decorating and home textiles is continuously expanding, thanks to its antibacterial and ultraviolet-resistant properties. Wallpaper and curtains made from bamboo fibre effectively absorb ultraviolet radiation across various wavelengths (Akinlabi et al., 2017 ). Additionally, bed linens, towels and curtains crafted from bamboo fibre offer natural antimicrobial benefits. Bamboo towels and bathrobes provide a soft and comfortable feel, along with excellent moisture absorption. The antibacterial properties of bamboo fibre prevent the growth of bacteria and eliminate unpleasant odours. The popularity of indoor bamboo fibre in textiles and home decor is on the rise, making it more easily accessible than ever before. Bamboo fabric has proven to be highly beneficial in the realm of activewear, as it effectively wicks away moisture and allows for breathability, ensuring optimal comfort during physical activities . Furthermore, bamboo fabric is also utilized in the creation of lightweight accessories such as scarves, hats and gloves, providing both comfort and style (Karthikeyan et al., 2016 ). In the field of sanitary materials, bamboo fibres are widely employed in various items including bandages, masks, surgical attire and nurses' uniforms. The inherent sterilizing and bacteriostatic properties of bamboo fibres make them highly advantageous for sanitary applications such as sanitary towels, gauze masks, absorbent pads and food packaging. Importantly, the natural antibacterial function of bamboo fibres eliminates the need for artificial antimicrobial agents, ensuring that these products do not cause skin allergies. Moreover, the competitive pricing of bamboo sanitary materials makes them accessible and appealing in the market (Lipp-Symonowicz et al., 2011 , Tausif et al., 2015 ). Bamboo non-woven fabric, derived from pure bamboo pulp, shares similar characteristics with viscose fibres. However, bamboo exhibits remarkable potential in various hygiene products such as sanitary napkins, masks, mattresses and food-packaging bags, owing to its inherent ability to resist bacteria (Min et al., 2019). Furthermore, bamboo textiles have found application in the reinforcement and utilization of biocomposites . The inclusion of bamboo fibres enhances the performance of composite products. Bamboo, as a natural fibre composite , has emerged as a superior alternative to previously used materials. Its advantageous properties include being eco-friendly, cost-effective, lightweight, non-toxic and biodegradable. Additionally, bamboo textiles are utilized in geotextile applications. Geotextiles are specialized fabrics that enhance the engineering performance of soil. The unique antibacterial and bacteriostatic bio-agent properties of bamboo fibres make them highly resistant to pathogens and play a crucial role in reducing soil loss (Saha and Mandal, 2020 , Santos et al., 2021 ). 7. Concern related to bamboo and labelling of bamboo fibre Bamboo fibres have been surrounded by numerous uncertainties, leading to confusion among users. In the late 2000s, textile manufacturers, especially those operating online, extensively promoted bamboo fabrics, claiming that they possessed a luxuriously soft texture, deeper colours than cotton, exceptional UV protection and natural antimicrobial properties. These claims were supported by the assertion that bamboo was grown in an eco-friendly manner. However, to verify the accuracy of these assertions, government authorities and researchers worldwide embarked on an investigation to uncover the true nature of the bamboo used in these unique garments (Gericke and Van der Pol, 2010 , Nayak and Mishra, 2016 ). To address these concerns, Hardin et al. (2009) conducted a thorough examination by obtaining samples of these fabrics. Their analysis focused on identifying the fibres and evaluating their antimicrobial activity. The findings revealed that the fibres closely resembled conventional viscose rayon fibre, indicating that they were not genuine bamboo fibres derived from the bast variety. Instead, they were spun from regenerated cellulose sourced from bamboo. Furthermore, the samples did not exhibit any antimicrobial activity, confirming that the fibre was, in fact, a type of rayon and not authentic bamboo. Consequently, the Federal Trade Commission (FTC) took legal action against deceptive sellers for engaging in fraudulent labelling and misleading advertising practices. Collaborative endeavours involving the industry, regulatory bodies, and consumer advocacy groups are imperative in order to tackle these concerns effectively. Several certifications and standards have been formulated and utilized for bamboo textiles to ensure environmental sustainability, ethical sourcing and quality. Fig. 3 shows the various labels that likely indicate genuine textile products. The OEKO-TEX Standard 100 provides assurance that textiles, including bamboo, are devoid of any harmful substances. On the other hand, the Global Organic Textile Standard (GOTS) specifically applies to organic textiles, ensuring that bamboo production adheres to strict environmental and social criteria. The Forest Stewardship Council (FSC) certifies bamboo that is sourced from responsibly managed forests. USDA Organic certification verifies that bamboo is grown organically, while the Rainforest Alliance Certification promotes sustainability. Assessments such as Cradle to Cradle (C2C) and ISO 14001 evaluate the overall sustainability and environmental management of bamboo products . Fair Trade Certification focuses on ensuring fair labour practices. These various certifications provide consumers and businesses with the confidence to choose bamboo products that align with environmental and ethical standards, thereby promoting responsible sourcing and manufacturing practices. It is important to consider regional variations in certification requirements to ensure compliance with specific standards (Hardin et al., 2009 , Nayak and Mishra, 2016 , Plakantonaki et al., 2023 ). Fig. 3. : Various labels and certifications for the authenticity of the textile products. 8. Challenges and ambiguities of bamboo and bamboo fibres As a fast-growing natural renewable material, bamboo could offer excellent sustainable solutions to reducing the carbon footprint, especially in highly populated regions in the world where bamboo is available in abundance. However, the rapid growth of bamboo, although beneficial in some contexts, can pose challenges in terms of plantation management. Clumping bamboos, like Bambusa vulgaris , have rhizomes that grow vertically and remain close to the original plant, resulting in dense and compact growth within the planted area. On the other hand, running bamboo species produce rhizomes that extend far from the parent plant, allowing them to spread over larger distances. These rhizomes can grow several feet away, Uncontrolled spreading can lead to ecological imbalances, disrupting native vegetation and reducing biodiversity. Bamboo leaves containing phenolic acid that inhibits the growth of other plants, enhancing the competitive advantage of bamboo. Beyond the positive aspects, this expansion can lead to invasive tendencies, reducing biodiversity and altering soil properties. Moso bamboo forests not only invade original forest spaces, leading to a reduction in biodiversity but also induce changes in the soil properties of affected areas. In China, Ying et al. (2016) observed that an evergreen broadleaf forest was more vulnerable to Moso bamboo invasion than deciduous broadleaf and coniferous forests . They found that Moso bamboo had certain edaphic preferences and thrived in warm, moist and sunny areas, with over 70% of the biomass and expansion occurring on slopes of 15°–30° with southerly, southeasterly and easterly aspects. Based on remote-sensing cover maps, Moso bamboo also commonly colonizes riverbank areas (Xu et al., 2020 ). Bamboo has attracted worldwide attention because of its distinctive life history. It is a perennial flowering plant, but many bamboo species remain in a vegetative phase for decades, or even a century, followed by mass synchronous flowering and subsequent death (Janzen, 1976 ). Mass flowering in certain bamboo species, “known as "gregarious flowering," disrupts the plant's life cycle, triggering ecological events with extensive impacts. The aftermath includes bamboo plant deaths, leading to soil vulnerability and environmental damage. Communities relying on bamboo for material and food face disruption, causing an ecological imbalance. The phenomenon attracts rats, particularly Rattus , accelerating their population growth due to the estrogen in bamboo seeds. This surge leads to issues like the depletion of bamboo resources, rat invasion and subsequent famine. Thus, bamboo flowering has a negative effect on the livelihoods of people who depend on bamboo resources and could lead to famine among self-sufficient farmers (Sertse et al., 2011 ). For example, Bambusa balcooa Roxb., B. tulda Roxb., Dendrocalamus hamiltonii Nees & Arn. ex Munro, and Stapletonia arunachalensis (H.B.Naithani) P.Singh, S.S.Dash & P.Kumari all flowered in 2009 in Arunachal Pradesh, India. Subsequently, rodent outbreaks were reported in the flowering area, which caused severe damage to many crops (Kumawat et al., 2014 ). It is therefore essential to acknowledge both the positive aspects and potential ecological drawbacks to provide a balanced and informed perspective on the overall environmental implications of bamboo cultivation and utilization. When thinking about buying bamboo faIric, it is essential to know that it usually costs more than cotton, especially for sustainable bamboo rather than bamboo rayon. Even though growing and harvesting bamboo is done sustainably, most bamboo clothes are made using a chemically intensive process called viscose to create bamboo rayon. The solvent employed in this procedure is carbon disulfide , a hazardous chemical known to pose risks to human reproduction. Its use in manufacturing can potentially jeopardize the health of factory workers and contribute to environmental pollution through both air emissions and wastewater discharge. Although mechanically extracted bamboo fibres are used for composite and technical textiles, much research is still needed on the mechanical extraction of bamboo fibre (Hardin et al., 2009 , Nayak and Mishra, 2016 ). 9. Conclusion The market for bamboo clothing is growing due to its sustainability and unique attributes. Mechanical extraction of bamboo fibre is emerging as more environmentally friendly process in comparison to chemically regenerated bamboo fibre. Due to the false claims, concerns regarding labelling accuracy and certifications are becoming important for bamboo fibre. Bamboo fibre possesses antibacterial properties and provide UV protection, making them highly promising for a wide range of textile applications. Although there are a lot of environmental benefits of bamboo and its fibres, it is crucial to recognize the ecological concerns associated with its rapid and aggressive growth. References Liese and Köhl, 2015 Liese, W., & Köhl, M., 2015. "Bamboo: The Plant and its Uses,." iIn: Bamboo – The Plant and its Uses. Springer, (pp. 3-13). ttps://doi.org/10.1007/978-3-319-14133-6.Google Scholar Afrin et al., 2012 T. Afrin, T. Tsuzuki, R.K. Kanwar, X. Wang The origin of the antibacterial property of bamboo J. Text. Inst., 103 (8) (2012), pp. 844-849, 10.1080/00405000.2011.614742 Agyekum et al., 2017 E.O. Agyekum, K.P.J. Fortuin, E.V. Harst Environmental and social life cycle assessment of bamboo bicycle frames made in Ghana J. Clean. Prod., 143 (2017), pp. 1069-1080, 10.1016/j.jclepro.2016.12.012 Akinlabi et al., 2017 E.T. Akinlabi, K. Anane-Fenin, D.R. Akwada, E.T. Akinlabi, K. Anane-Fenin, D.R. Akwada Applications of bamboo Bamboo: the multipurpose plant, Springer Cham (2017), 10.1007/978-3-319-56808-9 Amjad and Kumar, 2020 A.I. Amjad, R. Kumar Evaluation of mechanical and physical characteristics of eco blended melange yarns Tekstilec, 63 (2) (2020), pp. 94-103, 10.14502/Tekstilec2020.63.94-103 Amjad and Kumar, 2023 A.I. Amjad, R. Kumar Effect of eco-friendly bamboo rayon, lyocell, and seacell fibers on the properties of blended knitted melange fabrics Fibers Polym., 24 (5) (2023), pp. 1845-1858, 10.1007/s12221-023-00148-1 Asmarea et al., 2022 F.W. Asmarea, X. Liua, G. Qiaod, R. Lia, D. Wua, M.B. Babu Kc Physical and mechanical properties of coarse bamboo fibers extracted by different techniques J. Fiber Bioeng. Inform., 15 (4) (2022), pp. 287-302, 10.3993/jfbim00399 Bahari and Krause, 2016 S.A. Bahari, A. Krause Utilizing Malaysian bamboo for use in thermoplastic composites J. Clean. Prod., 110 (2016), pp. 16-24, 10.1016/j.jclepro.2015.03.052 Basit et al., 2018 A. Basit, W. Latif, S.A. Baig, A. Afzal The mechanical and comfort properties of sustainable blended fabrics of bamboo with cotton and regenerated fibers Cloth. Textiles Res. J., 36 (4) (2018), pp. 267-280, 10.1177/0887302×18782778 Chaowana et al., 2021 K. Chaowana, S. Wisadsatorn, P. Chaowana Bamboo as a sustainable building material—culm characteristics and properties article p.7376 Sustainability, 13 (13) (2021), 10.3390/su13137376 Chen et al., 2017 H. Chen, Y. Yu, T. Zhong, Y. Wu, Y. Li, Z. Wu, B. Fei Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers Cellulose, 24 (2017), pp. 333-347, 10.1007/s10570-016-1116-6 Chen and Guo, 2007 L. Chen, H. Guo Antibacterial finishing of bamboo viscose jersey fabrics Indian J. Fiber Text. Res., 32 (2007), pp. 146-151 David and Pailthorpe, 2002 S.K. David, M.T. Pailthorpe Classification of textile fibers: production, structure, and properties J. Robertson, C. Roux, K.G. Wiggins (Eds.), Forensic examination of fFibers (Second edition), CRC Press (2002), pp. 1-31 2pp Feng et al., 2023 Q. Feng, L. Wang, Z. Wan, X. Bu, Q. Deng, D. Li, C. Chen, Z. Xu Efficient ultraviolet blocking film on the lignin-rich lignocellulosic nanofibril from bamboo articlep. 126059 Int. J. Biol. Macromol., 250 (2023), 10.1016/j.ijbiomac.2023.126059 Gericke and Van der Pol, 2010 A. Gericke, J. Van der Pol A comparative study of regenerated bamboo, cotton and viscose rayon fabrics Part 1: Sel. Comf. Prop. J. Consum. Sci., 39 (2010), pp. 10-188 Gupta and Kumar, 2008 A. Gupta, A. Kumar Potential of bamboo in sustainable development Asia Pac. Bus. Rev., 4 (3) (2008), pp. 100-107, 10.1177/097324700800400312 Hairiah et al., 2020 K. Hairiah, W. Widianto, D. Suprayogo, M. Van Noordwijk Tree roots anchoring and binding soil: Reducing landslide risk in Indonesian agroforestry Land, 9 (8) (2020), p. 256, 10.3390/land9080256 Hardin et al., 2009 I.R. Hardin, S.Wilson Susan, D. Renuka, V. Dhende An Assessment of the Validity of Claims for “Bamboo” Fibers. AATCC Rev., Vol. 9 9 (100) (2009), pp. 33-36 No. 100 Harwood and Smith, 2020 R. Harwood, E. Smith Testing of natural textile fibers R.M. Kozłowski, M.M. Talarczyk (Eds.), Handbook of Natural Fibers, Woodhead Publishing (2020), pp. 535-576, 10.1533/9780857095503.1.345 Hatua et al., 2013 P. Hatua, A. Majumdar, A. Das Comparative analysis of in vitro ultraviolet radiation protection of fabrics woven from cotton and bamboo viscose yarns J. Text. Inst., 104 (7) (2013), pp. 708-714, 10.1080/00405000.2012.753178 Imadi et al., 2014 S.R. Imadi, I. Mahmood, A.G. Kazi Bamboo fiber processing, properties, and applications K. Hakeem, M. Jawaid, U. Rashid (Eds.), Biomass and Bioenergy, Springer, Cham (2014), pp. 27-46, 10.1007/978-3-319-07641-6_2 (in: Biomass and Bioenergy: Processing and Properties) Jais et al., 2023 F.N.M. Jais, M. Mokeramin, M.N. Roslan, J.A. Halip, W.A.W. Jusoh Bamboo Fiber for Textile Applications, i P. Md Tahir, S.H. Lee, S.S. Osman Al-Edrus, M.K.A. Uyup (Eds.), Multifaceted Bamboo, Springer, Singapore (2023), 10.1007/978-981-19-9327-5_14 Janzen, 1976 D.H. Janzen Why bamboos wait so long t”o flower Annu. Rev. Ecol. Syst., 7 (1) (1976), pp. 347-391 Karthikeyan et al., 2016 G. Karthikeyan, G. Nalankilli, O.L. Shanmugasundaram, C. Prakash Thermal comfort properties of bamboo tencel knitted fabrics Int. J. Cloth. Sci. Technol., 28 (4) (2016), pp. 420-428, 10.1108/IJCST-08-2015-0086 Kaur et al., 2016 P.J. Kaur, V. Kardam, S.N. Naik, S. Satya, K.K. Pant Characterization of commercially important Asian bamboo species Eur. J. Wood Prod., 74 (2016) (2016), pp. 137-139, 10.1007/s00107-015-0977-y Kaur et al., 2013 V. Kaur, D.P. Chattopadhyay, S. Kaur Study on extraction of bamboo fibers from raw bamboo fibers bundles using different retting techniques. Text Light Ind. Sci. Technol., 2 (2013), pp. 174-179 Khalil et al., 2012 H.A. Khalil, Y. Davoudpour, M.N. Islam, A. Mustapha, K. Sudesh, R. Dungani Production and modification of nanofibrillated cellulose using various mechanical processes: a review Carbohydr. Polym., 88 (3) (2012), pp. 951-976, 10.1016/j.carbpol.2013.08.069 Kozłowski and Mackiewicz-Talarczyk, 2020 R.M. Kozłowski, M. Mackiewicz-Talarczyk Introduction to natural textile fibers R.M. Kozłowski, M.M. Talarczyk (Eds.), In Handbook of Natural Fibers, Woodhead Publishing (2020), pp. 1-13, 10.1016/B978-0-12-818398-4.00001-3 Kumawat et al., 2014 M.M. Kumawat, K.M. Singh, R.S. Tripathi, T. Riba, S. Singh, D. Sen Rodent outbreak in relation to bamboo flowering in north-eastern region of India Biol. Aagricult. Hhorticult., 30 (4) (2014), pp. 243-252, 10.1080/01448765.2014.925828 Kushwaha et al., 2023 A. Kushwaha, K. Chaudhary, C. Prakash A study on the mechanical properties of pineapple, bamboo, and cotton woven fabrics Biomass-.-. Convers. Biorefinery, 13 (2023), pp. 1-12, 10.1007/s13399-023-03841-6 Li et al., 2019 W. Li, Z. Li, X. Wang Identification of Natural Bamboo Fiber and Regenerated Bamboo Fiber by the Method of Modified near Infrared Spectroscopy In MATEC Web of Conferences, Vol. 257, EDP Sciences, France (2019), p. 02002, 10.1051/matecconf/201925702002 Lipp-Symonowicz et al., 2011 B. Lipp-Symonowicz, S. Sztajnowski, D. Wojciechowska New commercial fibree‘s called 'bamboo fibres' - Their structure and properties Fibres Text. East. Eur., 1 (84) (2011), pp. 18-23 Liu et al., 2012 D. Liu, J. Song, D.P. Anderson, P.R. Chang, Y. Hua Bamboo fiber and its reinforced composites: structure and properties Cellulose, 19 (2012), pp. 1449-1480, 10.1007/s10570-012-9741-1 Liu et al., 2017 M. Liu, A. Thygesen, J. Summerscales, A.S. Meyer Targeted pre-treatment of hemp bast fibers for optimal performance in biocomposite materials: A review Ind. Crops Prod., 108 (2017), pp. 660-683, 10.1016/j.indcrop.2017.07.027 Maiti et al., 2022 S. Maiti, M.R. Islam, M.A. Uddin, S. Afroj, S.J. Eichhorn, N. Karim Sustainable fiber-reinforced composites: A Review (article) Adv. Sustain. Syst., 6 (11) (2022), Article 2200258, 10.1002/adsu.202200258 Majumdar et al., 2010 A. Majumdar, S. Mukhopadhyay, R. Yadav Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibers Int. J. Therm. Sci., 49 (10) (2010), pp. 2042-2048, 10.1016/j.ijthermalsci.2010.05.017 Majumdar and Pol, 2014 A. Majumdar, S.B. Pol Low stress mechanical properties of fabrics woven from bamboo viscose blended yarns Fibers Polym., 15 (2014), pp. 1985-1991, 10.1007/s12221-014-1985-y Malekzadeh et al., 2021 H. Malekzadeh, N.S.B. Md Zaid, E. Bele Characterization and structural properties of bamboo fiber solid foams Cellulose, 28 (2021), pp. 703-714, 10.1007/s10570-020-03565-0 Mishra et al., 2012 R. Mishra, B.K. Behera, B. Pada Pal Novelty of bamboo fabric J. Text. Inst., 103 (3) (2012), pp. 320-329, 10.1080/00405000.2011.576467 Mousavi et al., 2022 S.R. Mousavi, M.H. Zamani, S. Estaji, M.I. Tayouri, M. Arjmand, S.H. Jafari, S. Nouranian, H.A. Khonakdar Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies J. Mater. Sci., 57 (5) (2022), pp. 3143-3167, 10.1007/s10853-021-06854-6 Nayak and Mishra, 2016 L. Nayak, S.P. Mishra Prospect of bamboo as a renewable textile fiber, historical overviewing, labeling, controversies and regulation Fash. Text., 3 (1) (2016), p. 2, 10.1186/s40691-015-0054-5 Oner, 2019 E. Oner Mechanical and thermal properties of knitted fabrics produced from various fiber types Fibers Polym., 20 (11) (2019), pp. 2416-2425, 10.1007/s12221-019-9119-1 Pan et al., 2023 C. Pan, G. Zhou, A.K. Shrestha, J. Chen, R. Kozak, N. Li, J. Li, Y. He, C. Sheng, G. Wang Bamboo as a Nature-Based Solution (NbS) for Climate Change Mitigation: Biomass, Products, and Carbon Credits Climate, 11 (2023), p. 175, 10.3390/cli11090175 Periyasamy and Militky, 2020 A.P. Periyasamy, J. Militky Sustainability in regenerated textile fibers S.S. Muthu, M.A. Gardetti (Eds.), Sustainability in the Textile and Apparel Industries: Sourcing Synthetic and Novel Alternative Raw Materials, 2020, Springer, Cham (2020), pp. 63-95, 10.1007/978-3-030-38013-7 Plakantonaki et al., 2023 S. Plakantonaki, K. Kiskira, N. Zacharopoulos, I. Chronis, F. Coelho, A. Togiani, K. Kalkanis, G. Priniotakis A Review of Sustainability Standards and Ecolabeling in the Textile Industry Sustainability, 15 (15) (2023), p. 11589, 10.3390/su151511589 Prakash, 2020 C. Prakash Bamboo fiber R. Kozłowski, M.M. Talarczyk (Eds.), Handbook of Nnatural Ffibers, Woodhead Publishing (2020), pp. 219-229, 10.1016/B978-0-12-818398-4.00009-8 Prakash et al., 2021 C. Prakash, A. Jebastin Rajwin, S. Periyasamy, G. Gunasekaran Effect of bamboo and neem charcoal micro particles application on the anti bacterial and UV protection properties of woven fabrics J. Text. Inst., 112 (7) (2021), pp. 1171-1180, 10.1080/00405000.2020.1805193 Prakash et al., 2013 C. Prakash, G. Ramakrishnan, C.V. Koushik Effect of blend proportion on moisture management characteristics of bamboo/cotton knitted fabrics J. Text. Inst. J. Text. Inst., 104 (12) (2013), pp. 1320-1326, 10.1080/00405000.2013.800378 amamoorthy et al., 2015 S.K. Ramamoorthy, M. Skrifvars, A. Persson A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers Polym. Rev., 55 (1) (2015), pp. 107-162, 10.1080/15583724.2014.971124 Restrepo et al., 2016 A. Restrepo, R. Becerra, J.E. Tibaquirá Energetic and carbon footprint analysis in manufacturing process of bamboo boards in Colombia J. Clean. Prod., 126 (2016), pp. 563-571, 10.1016/j.jclepro.2016.02.144 Rocky and Thompson, 2018 B.P. Rocky, A.J. Thompson Production of natural bamboo fibers-1: Experimental approaches to different processes and analyses J. Text. Inst., 109 (10) (2018), pp. 1381-1391, 10.1080/00405000.2018.1482639 Rocky and Thompson, 2020 B.P. Rocky, A.J. Thompson Production and modification of natural bamboo fibers from four bamboo species, and their prospects in textile manufacturing Fibers Polym., 21 (2020), pp. 2740-2752, 10.1007/s12221-020-1208-7 Sadrmanesh and Chen, 2019 V. Sadrmanesh, Y. Chen Bast fibers: structure, processing, properties, and applications Int. Mater. Rev., 64 (7) (2019), pp. 381-406, 10.1080/09506608.2018.1501171 Saha and Mandal, 2020 D.C. Saha, J.N. Mandal Performance of reclaimed asphalt pavement reinforced with Bamboo geogrid and Bamboo geocell Int. J. Pavement Eng., 21 (5) (2020), pp. 571-582, 10.1080/10298436.2018.1502432 Santos et al., 2021 A.S. Santos, P.J.T. Ferreira, T. Maloney Bio-based materials for nonwovens Cellulose, 28 (14) (2021), pp. 8939-8969, 10.1007/s10570-021-04125-w Sertse et al., 2011 D. Sertse, T. Disasa, K. Bekele, M. Alebachew, Y. Kebede, N. Eshete, S. Eshetu Mass flowering and death of bamboo: a potential threat to biodiversity and livelihoods in Ethiopia J. Biodivers. Environ. Sci., 1 (5) (2011), pp. 16-25 Sfiligoj Smole et al., 2013 M. Sfiligoj Smole, S. Hribernik, K. Stana Kleinschek, T. Kreže Plant fibers for textile and technical applications Adv. Agrophys. Res. (2013), pp. 369-398, 10.5772/52372 Shinohara et al., 2019 Y. Shinohara, Y. Misumi, T. Kubota, K. Nanko Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest Catena, 172 (2019), pp. 451-460, 10.1016/j.catena.2018.09.011 Singh et al., 2017 A.S. Singh, S. Halder, J. Wang Extraction of bamboo micron fibers by optimized mechano-chemical process using a central composite design and their surface modification Mater. Chem. Phys., 199 (2017), pp. 23-33, 10.1016/j.matchemphys.2017.06.040 Singh and Dessalegn, 2021 B. Singh, M.Y. Dessalegn Effect analysis of extraction processes of bamboo fiber NVEO-Nat. Volatiles Essent. Oils J. | NVEO, 8 (5) (2021), pp. 4226-4246 Sisti et al., 2018 L. Sisti, G. Totaro, M. Vannini, A. Celli Retting process as a pretreatment of natural fibers for the development of polymer composites Lignocellul. Compos. Mater. (2018), pp. 97-135, 10.1007/978-3-319-68696-7_2 Sugesty et al., 2015 S. Sugesty, T. Kardiansyah, H. Hardiani Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber Procedia Chem., 17 (2015), pp. 194-199 Tahir et al., 2011 P.M. Tahir, A.B. Ahmed, S.O. SaifulAzry, Z. Ahmed Retting process of some bast plant fibers and its effect on fiber quality: a review BioResources, 6 (4) (2011), pp. 5260-5528, 10.15376/biores.6.4.5260-5281 Tang et al., 2016 X. Tang, S. Fan, L. Qi, F. Guan, W. Su, M. Du A comparison of soil respiration, carbon balance and root carbon use efficiency in two managed moso bamboo forests in subtropical china Ann. For. Res., 59 (1) (2016), pp. 3-20, 10.15287/afr.2016.497 Tardio et al., 2018 G. Tardio, S.B. Mickovski, H.P. Rauch, J.P. Fernandes, M.S. Acharya The use of bamboo for erosion control and slope stabilization: Soil bioengineering works H.P.S. Abdul Khalil (Ed.), Bamboo: Current and Future Prospects, Intec open (2018), p. 105, 10.5772/intechopen.75626 Tausif et al., 2015 M. Tausif, F. Ahmad, U. Hussain, A. Basit, T. Hussain A comparative study of mechanical and comfort properties of bamboo viscose as an eco-friendly alternative to conventional cotton fiber in polyester blended knitted fabrics J. Clean. Prod., 89 (2015), pp. 110-115, 10.1016/j.jclepro.2014.11.011 Teli and Sheikh, 2013 M.D. Teli, J. Sheikh Functional Modification of Bamboo Rayon (Cellulose) fabric to render it antibacterial and UV protective Adv. Mater. Res., 747 (2013), pp. 509-513 Wang et al., 2008 G. Wang, J.L. Innes, S. Dai, G. He Achieving sustainable rural development in Southern China: the contribution of bamboo forestry Int. J. Sustain. Dev. World Ecol., 15 (5) (2008), pp. 484-495, 10.3843/susdev.15.5:9 Wang et al., 2014 X. Wang, T. Keplinger, N. Gierlinger, I. Burgert Plant material features responsible for bamboo’s excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fiber and cell wall levels Ann. Bot., 114 (2014), pp. 1627-1635, 10.1093/aob/mcu180 Wróblewska et al., 2018 K.B. Wróblewska, D.C.S. de Oliveira, M.T. Grombone-Guaratini, P.R.H. Moreno Medicinal properties of bamboos S. Perveen, A. Al-Taweel (Eds.), Pharmacognosy, IntechOpen, Rijeka (2018), 10.5772/intechopen.82005 Wu et al., 2021 Y. Wu, Y. Zheng, F. Yang, L. Yang Preparation process and characterization of mechanical properties of twisted bamboo spun fiber bundles J. Mater. Res. Technol., 14 (2021), pp. 2131-2139, 10.1016/j.jmrt.2021.07.080 Xu et al., 2020 Q.F. Xu, C.F. Liang, J.H. Chen, Y.C. Li, H. Qin, J.J. Fuhrmann Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes+ Glob. Ecol. Conserv., 21 (2020), Article e00787, 10.1016/j.gecco.2019.e00787 Xu et al., 2007 Y. Xu, Z. Lu, R. Tang Structure and thermal properties of bamboo viscose, Tencel and conventional viscose fiber J. Therm. Anal. Calorim., 89 (2007), pp. 197-201, 10.1007/s10973-005-7539-1 Ying et al., 2016 W. Ying, J. Jin, H. Jiang, X. Zhang, X. Lu, X. Chen, J. Zhang Satellite-based detection of bamboo expansion over the past 30 years in Mount Tianmushan, China Int. J. Remote Sens., 37 (13) (2016), pp. 2908-2922, 10.1080/01431161.2016.1186851 Zhang et al., 2020 M. Zhang, S. Chen, H. Jiang, C. Peng, J. Zhang, G. Zhou The Impact of Intensive Management on Net Ecosystem Productivity and Net Primary Productivity of a Lei Bamboo Forest Ecol. Model., 435 (2020), Article 109248, 10.1016/j.ecolmodel.2020.109248 Zhao et al., 2024 W. Zhao, Y. Zou, W. Zhang, H. Chen, J. Zhang, A. Wu, Y. Zhao Ooptimization of process parameters for bamboo fiber extraction by steam explosion J. Nat. Fibers, 21 (1) (2024), Article 2301369, 10.1080/15440478.2023.2301369 Zuo et al., 2018 Y. Zuo, W. Li, P. Li, W. Liu, X. Li, Y. Wu Preparation and characterization of polylactic acid-g-bamboo fiber based on in-situ solid phase polymerization Ind. Crops Prod., 123 (2018), pp. 646-653, 10.1016/j.indcrop.2018.07.024 © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- Articles | 2LG123
Liste de Lecture Les publications suivantes ont profondément éclairé nos travaux et offrent des perspectives précieuses sur les thématiques abordées dans ce site. Ces ressources constituent une excellente base documentaire pour approfondir les sujets évoqués. Read Now DERNIERS ARTICLES Découvrez notre bibliothèque complète d'articles et d'idées d'experts sur le bambou LE CENTRE DU BAMBOU CHINO-AFRIQUE SERA CONSTRUIT EN ÉTHIOPIE Lire maintenant Le bambou joue un rôle important dans la régénération des zones humides transfrontalières d'Afrique de l'Est Lire maintenant Étude des ressources en bambou en Afrique : un appel à une attention et une action particulières Lire maintenant Le bambou en Afrique : une richesse verte Lire maintenant Le bambou en Afrique : une richesse verte Lire maintenant Le bambou en Afrique : une richesse verte Lire maintenant Le bambou en Afrique : une richesse verte Lire maintenant Le bambou en Afrique : une richesse verte Lire maintenant © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- BUSINESS CONTACT FORM | 2LG123
Formulaire de demande Nom de l'entreprise Nom et prénom Poste E-mail Téléphone Demande de renseignements Soumettre © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- Gallerie | 2LG123
GALERIE © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- Article 1 | 2LG123
LA CONSTRUCTION D’UN CENTRE CHINE‑AFRIQUE DE BAMBOU EN ÉTHIOPIE Une discussion bilatérale s’est tenue entre l’Administration nationale des forêts et des prairies de Chine, agissant au nom du Comité national pour le reboisement, et des représentants de la Commission éthiopienne pour l’environnement, les forêts et le changement climatique. Au terme de plusieurs heures d’échanges, les deux parties ont confirmé leur engagement commun à construire le Centre Afrique-Chine du Bambou en Éthiopie, dont l’accord avait été signé et l’étude de faisabilité finalisée auparavant. Le gouvernement chinois a accordé une subvention de 400 millions de yuans pour la construction du centre, en septembre dernier. Cette initiative avait été évoquée à haut niveau entre Son Excellence Dr Abiy Ahmed, Premier ministre de la République fédérale démocratique d'Éthiopie, et des représentants du gouvernement chinois, en marge du Forum sur l’Initiative la Ceinture et la Route Chine-Afrique. Lors de cette réunion, le commissaire de la Commission éthiopienne pour l’environnement, les forêts et le changement climatique, Son Excellence Professeur Fekadu Beyene, a souligné que les relations entre la Chine et l’Éthiopie sont stratégiques, et que la Chine demeure un partenaire fiable dans le développement du pays. Le professeur a précisé que l’Éthiopie est entrée dans une nouvelle ère de développement vert, visant l’excellence dans la mise en œuvre de sa stratégie environnementale. La construction du Centre Afrique-Chine du Bambou en Éthiopie constitue, selon lui, un pilier clé de cette stratégie. Il a également rappelé que le soutien du gouvernement chinois au projet "Beautifying Sheger" s’inscrit pleinement dans la vision de développement écologique national. Le projet, situé à Addis-Abeba, est appelé à jouer un rôle majeur dans la modernisation de la capitale politique de l’Afrique, porte d’entrée diplomatique du continent. Madame Hu Zhangcui, directrice exécutive adjointe de l’Administration nationale des forêts et des prairies de Chine, a exprimé la volonté du gouvernement chinois de soutenir les projets de développement en Éthiopie, tant sur le plan financier que technique. Elle a réaffirmé que le financement du Centre Afrique-Chine du Bambou fait partie de cet engagement, tout comme d’autres formes de coopération technique à travers le continent africain. De son côté, Son Excellence Monsieur Kebede Yimam, vice-commissaire au secteur forestier au sein de la Commission éthiopienne, a insisté sur le potentiel immense de l’Éthiopie en matière de ressources forestières et de bambou. Il a souligné que la mise en place rapide du centre permettra d’accélérer les retombées économiques et diplomatiques pour le pays. © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- Article 4 | 2LG123
Le bambou en Afrique : une richesse verte Auteur: Fred Hornaday https://bambubatu.com/bamboo-in-africa-a-green-bounty/ Pyramides, mines de diamants et safaris dans le Serengeti — voici quelques-unes des images qui nous viennent à l’esprit lorsque l’on pense à l’Afrique. Et quelque part, tout en bas d’une très longue liste, on pourrait rencontrer… le bambou. Pourtant, l’Afrique, ce continent souvent entouré de mystère, abrite en réalité une étonnante abondance de cette « herbe miracle » qu’est le bambou. Après l’Asie et l’Amérique du Sud, l’Afrique est le troisième continent le plus riche en espèces de bambou. Le bambou est répandu dans une grande partie de l’Afrique subsaharienne, de l’Éthiopie jusqu’à l’Afrique du Sud et Madagascar. Le continent abrite au moins quatre genres de bambous tropicaux autochtones à croissance en touffe : Cathariostachys, Cephalostachyum, Oxytenanthera et Schizostachyum ; ainsi qu’un petit groupe de bambous tempérés des genres Bergbambos, Oldeania, Thamnocalamus et Yushania. D’autres variétés de bambous sont également cultivées commercialement en Afrique. C’est une culture résiliente, durable et abordable, qui constitue une excellente alternative aux matériaux de construction dans les pays en développement. Dans l’article suivant — publié pour la première fois en décembre 2020 et mis à jour pour la dernière fois en janvier 2025 — nous examinerons de plus près les variétés de bambou qui poussent dans les différentes régions d’Afrique. Nous parlerons aussi des façons dont les Africains cultivent le bambou comme culture commerciale, puits de carbone et matériau de construction renouvelable. Les zones tropicales et subtropicales du continent sont idéales pour sa culture, et dans ces régions peu industrialisées, il offre un moyen de subsistance économique et écologique. Bambous autochtones d’Afrique Malgré les idées reçues sur les zones de croissance du bambou dans le monde, il existe en réalité une diversité impressionnante d’espèces dans cette sous-famille de graminées. On peut trouver du bambou dans les jungles tropicales de l’Amazonie, sur les pentes fraîches de l’Himalaya, et dans les zones humides du sud des États-Unis. Et bien sûr, il prospère aussi dans toute la Chine et au Japon. Il n’est donc pas surprenant que le vaste et verdoyant continent africain abrite une multitude de variétés de bambou. Les forêts tropicales et savanes subtropicales offrent un environnement idéal à ces graminées vigoureuses. Et c’est l’Éthiopie qui en possède la plus grande part : environ deux tiers des bambous indigènes du continent s’y trouvent. Classification des bambous en touffe En règle générale, la plupart des espèces de bambous tropicaux et subtropicaux ont une croissance en touffe. Elles appartiennent à la tribu des Bambuseae. Les bambous traçants, qui se répandent plus rapidement, sont généralement originaires de climats plus tempérés comme le centre de la Chine ou le Japon. Ceux-ci appartiennent à la tribu des Arundinarieae. Cependant, on trouve plusieurs exceptions en Asie centrale, notamment autour de l’Himalaya. Et l’Afrique a aussi ses propres anomalies : certaines espèces y sont classées comme Arundinarieae mais présentent des rhizomes compacts typiques des bambous en touffe. La majorité des bambous indigènes du continent sont tropicaux à croissance en touffe, répartis en trois genres principaux. Mais d’autres genres, moins diversifiés, incluent un assortiment de variétés de bambous tempérés, principalement dans les hauts plateaux d’Afrique de l’Est et du Sud. Bambou commun Bambusa vulgaris, ou bambou commun, est particulièrement répandu en Afrique subsaharienne. Cependant, il est difficile d’affirmer s’il est réellement originaire du continent. Beaucoup pensent qu’il provient du sud de la Chine et s’est propagé à travers le monde grâce aux navigateurs, botanistes et explorateurs. Dans tous les cas, c’est une espèce prolifique et très utile. Elle est souvent multipliée et cultivée pour ses qualités de matériau de construction. Cette espèce possède plusieurs cultivars, dont certains sont dorés et ornementaux avec des rayures spectaculaires. Les variétés africaines, quant à elles, sont généralement d’un vert foncé. Elles peuvent atteindre environ 15 mètres de haut pour 8 à 10 centimètres de diamètre. Nouvelles variétés de bambous tempérés africains La classification du bambou est une tâche complexe. On dénombre actuellement entre 90 et 120 genres, pour environ 1 200 à 2 000 espèces et cultivars. Pourtant, des découvertes récentes en Afrique ont mis en évidence deux nouveaux genres de bambou. Bergbambos et Oldeania sont étroitement liés à, mais distincts de Borinda, Fargesia, Thamnocalamus et Yushania. Comme ces derniers, ils ont des rhizomes courts de type pachymorphe (en touffe), des chaumes lisses et sans épines. Mais ils présentent de subtiles différences dans leurs fleurs et la formation des gaines. Actuellement, ces deux genres sont monotypiques, c’est-à-dire qu’ils ne comprennent chacun qu’une seule espèce. Bergbambos tessellata, tout comme Thamnocalamus tessellatus, pousse exclusivement dans les montagnes d’Afrique du Sud, du Lesotho et d’Eswatini. Oldeania alpina se retrouve à travers l’Afrique tropicale, du Cameroun à l’ouest jusqu’à l’Éthiopie et la Tanzanie à l’est. À l’instar du bambou montagnard chinois qui nourrit le panda géant, cette espèce fournit une alimentation essentielle au gorille des montagnes, en danger critique d’extinction (Gorilla beringei beringei). La culture du bambou en Afrique Avec la montée en popularité du bambou et les pressions croissantes liées au changement climatique, l’Afrique s’oriente aujourd’hui vers cette herbe miracle comme culture capable de réduire la pauvreté tout en répondant aux plus hauts standards de durabilité. À travers l’Afrique subsaharienne — du Ghana à l’Éthiopie, de l’Afrique du Sud au Cameroun — la culture du bambou se développe rapidement. Des organisations internationales coopèrent avec les agriculteurs et entrepreneurs africains pour améliorer les revenus locaux et générer des retombées mondiales positives. Voici quelques-uns des projets de bambou les plus remarquables actuellement en cours sur le continent vert. Le bambou en Éthiopie Croyez-le ou non, l’Éthiopie — un pays souvent associé à la sécheresse et à la famine — possède en réalité plus de bambou que tout autre pays africain, avec près d’un million d’hectares. Yushania alpina pousse dans les montagnes, tandis que Oxytenanthera abyssinica se développe dans les plaines, comme dans de nombreuses autres régions d’Afrique subsaharienne. Le programme Inter-Africa Livelihood Development, géré par l’INBAR (Organisation Internationale du Bambou et du Rotin), a promu avec succès la culture et l’industrie du bambou dans la région. Ce programme a mis en relation des experts chinois avec des communautés locales, employant plus de 1 000 Éthiopiens dans la filière du bambou. Aujourd’hui, les Éthiopiens utilisent le bambou dans de nombreux domaines, de la construction aux objets artisanaux. Outre les débouchés économiques pour les petits agriculteurs, la culture du bambou contribue à lutter contre la déforestation, à contrôler l’érosion, à offrir de l’ombre et à protéger les bassins versants. Elle joue ainsi un rôle crucial dans la prévention de nouvelles sécheresses. Le bambou au Ghana Ce petit pays d’Afrique de l’Ouest offre un environnement favorable à la culture du bambou, et les populations locales commencent à en tirer parti. Outre les espèces indigènes comme Oxytenanthera abyssinica, ils cultivent également des variétés commerciales telles que Dendrocalmus asper et Bambusa balcooa (aussi appelée « Beema »), une espèce robuste originaire d’Inde. Le programme Inter-Africa, également actif en Éthiopie, au Cameroun et à Madagascar, a joué un rôle clé dans le développement de la culture et du commerce du bambou au Ghana. Le bambou au Kenya Voisin de l’Éthiopie, le Kenya mène l’un des programmes de culture du bambou les plus ambitieux du continent. Les ministères et les ONG y collaborent pour créer une industrie du bambou compétitive à l’échelle mondiale. Dans ce but, des espèces telles que le Moso (le bambou le plus utilisé en Chine pour le bois et les textiles), Bambusa long-internode, Asper, et Dendrocalamus membranaceus (originaire d’Asie du Sud-Est) sont cultivées. Le bambou constitue une excellente alternative au bois, souvent brûlé localement pour l’énergie. Les Kenyans utilisent aussi les forêts de bambou pour protéger les rivières Mara et Njoro et restaurer les habitats naturels. En septembre 2020, le gouvernement a reclassé le bambou, passant du statut d’herbe à celui de culture, ouvrant la voie à davantage de recherches et d’investissements. Le bambou au Malawi Pays enclavé entre la Zambie et le Mozambique, au sud-ouest de la vallée du Grand Rift, le Malawi possède peu de bambous autochtones. Cela n’a pas empêché Jan Oprins et Grant Blumrick de lancer Afribam, l’une des plus grandes plantations de bambou d’Afrique australe. Spécialisée dans Dendrocalamus asper, une espèce géante originaire d’Asie du Sud-Est, Afribam considère le bambou comme un outil crucial pour relever les défis sociaux et environnementaux du pays. Le Malawi est l’un des pays les plus pauvres du monde, avec 90 % de la population vivant avec moins de 2 dollars par jour. Il est aussi fortement touché par le paludisme, un problème de santé publique qui s’aggrave avec le réchauffement climatique. Et comme d’autres régions tropicales, il a connu une importante déforestation — plus de 10 % de ses forêts ont disparu depuis 2001. Le bambou peut jouer un rôle important dans la restauration des forêts tout en offrant des opportunités économiques aux agriculteurs de subsistance. En outre, les forêts de bambou peuvent absorber les eaux stagnantes où prolifèrent les moustiques porteurs du paludisme. Le bambou en Ouganda Les hauts plateaux tropicaux d’Ouganda offrent un habitat idéal pour le bambou, indigène ou cultivé. Depuis plusieurs années, le gouvernement et l’Uganda Bamboo Association encouragent sa culture, en soulignant ses bénéfices écologiques et son potentiel pour améliorer les économies rurales. Localement, le bambou est utilisé pour la construction et l’alimentation animale. Il sert aussi à fabriquer des objets artisanaux, des ustensiles de cuisine et même du vinaigre de bambou, transformé en savons et produits cosmétiques. Ses sous-produits pourraient servir à produire du biocarburant, une fois les infrastructures en place. Le projet Bamboo Village attire également des investissements extérieurs en proposant aux entreprises et particuliers d’acheter des parcelles pour générer des crédits carbone et compenser leurs émissions. Cela permet d’étendre les plantations, d’embaucher davantage de travailleurs, et de construire plus de logements, tout en améliorant l’écosystème. © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- Home | 2LG123
Le bambou en Afrique : une richesse verte Les pyramides, les mines de diamants et les safaris dans le Serengeti... Voici quelques-unes des choses qui nous viennent à l’esprit lorsque nous pensons à l’Afrique. Et tout en bas d’une très longue liste, nous pourrions peut-être mentionner le bambou. Pourtant, l’Afrique, un continent enveloppé de mystère, abrite en réalité une quantité surprenante de cette herbe miracle qu’est le bambou. Lire l’article GALERIE VOIR PLUS LA CONSTRUCTION D’UN CENTRE CHINE‑AFRIQUE DE BAMBOU EN ÉTHIOPIE Une réunion bilatérale s’est tenue entre l’Administration nationale des forêts et des prairies de Chine (représentant le Comité national de reboisement) et des responsables de la Commission éthiopienne de l’environnement, des forêts et du changement climatique. LE BAMBOU JOUE UN RÔLE ESSENTIEL DANS LA RÉGÉNÉRATION DES ZONES HUMIDES TRANSFRONTALIÈRES D’AFRIQUE DE L’EST Un rapport de Wetlands International publié en 2020 a signalé que les zones humides de Sio-Siteko étaient confrontées à de nombreux défis pour leur survie, notamment une croissance démographique rapide, un taux élevé de pauvreté et des systèmes et structures de gouvernance faibles. Guide des types de bambou Lire l’article © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
- Reading List | 2LG123
Liste de Lecture Title Series Authors Year Exploitation et importance socio-économique du bambou de chine, Bambusa vulgaris Schrad. ex J.C. Wendl. (Poaceae) dans la région de l’Agnéby-Tiassa: cas de la Sous-Préfecture d’Azaguié (Sud-Est de la Côte d’Ivoire) International Journal of Biological and Chemical Sciences Dje, Bi Dobo Pierre Valence; Koffi, Jean Kouao; Vroh, Bi Tra Aimé; Kpangui, Kouassi Bruno; Yao, Constant Yves Adou 2018 April 12 Green Gold of Africa - Can growing native bamboo in Ethiopia become a commercially viable business The Forestry Chronicle Böck, Felix 2014 October Hear the Parable of the Bamboo: Africa Approaching a Jubilee The Ecumenical Review Paride Taban 1997 October Ecosystem services and biomass stock from bamboo stands in central and southern Benin, West Africa Energy, Ecology and Environment Houdanon, Roel Dire; Mensah, Sylvanus; Gnanglè, Césaire; Yorou, Nourou Soulemane; Houinato, Marcel 2018 March 10 Potentials of Bamboo-Based Agroforestry for Sustainable Development in Sub-Saharan Africa: A Review Agricultural Research Partey, Samuel T.; Sarfo, Daniel A.; Frith, Oliver; Kwaku, Michael; Thevathasan, Naresh V. 2017 January 19 Population structure of two bamboo in relation to topographical units in the Republic of Benin (West Africa): Implications for sustainable management Acta Botanica Gallica Tovissodé, F.C.; Honfo, H.S.; Salako, V.K.; Gnanglè, C.P.; Mensah, S.; Glèlè Kakaï, R. 2015 January 02 Bamboo Shoots: Asian Migration, Trade and Business Networks in South Africa Journal for Studies in Economics and Econometrics Kerby, E. 2018 August 1 Study on Behaviour of Coconut Shell Aggregate Concrete with Bamboo Reinforcement in Compression Member International Journal of Engineering Research in Africa Amutha, S.; Arul Prakash, D.; Lakshmipathy, M.; Kumaran, G.Senthil 2015 July © CNRBB Le Centre National de Recherche sur le Bambou du Burundi est un employeur garantissant l’égalité des chances. Nous accueillons toutes les candidatures qualifiées sans distinction de race, couleur, âge, religion, sexe, orientation sexuelle, identité ou expression de genre, origine nationale, statut de vétéran ou toute autre caractéristique protégée par la loi. Les personnes ayant un passé judiciaire seront considérées conformément aux lois en vigueur.
Résultats de recherche

2LG entretient des partenariats internationaux de longue date. Découvrez-les ici.

Ghanaian Hammers
2LG est fier de sponsoriser la section ghanéenne officielle du célèbre club de Premier League anglaise, West Ham United. Allez les Hammers !
Vêtements ETHNiQ
Conçu et fabriqué en Zambie, ETHNiQ apporte une touche africaine à l'équipement moto. Mettant en valeur des designs africains inspirants, ETHNiQ propose des modèles innovants, durables et tendance, garantis pour résister aux trajets les plus difficiles.
Maisons ARH
Notre partenaire suédois ARH propose des solutions de logement durables et fiables dans le monde entier. ARH est spécialisé dans les interventions humanitaires de premier secours dans les zones touchées par des catastrophes naturelles et des conflits.
Cigares Victoria
Victoria Cigars est l'une des plus grandes marques de cigares traditionnels d'Asie. Depuis 1999, Victoria produit des cigares de luxe fabriqués uniquement à partir des meilleures feuilles de tabac cultivées en Asie du Sud-Est, pour une expérience de fumage incomparable.